1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {
static class NumCountPair {
int num;
int count;

NumCountPair(int num, int count) {
this.num = num;
this.count = count;
}
}

public int[] topKFrequent(int[] nums, int k) {
Map<Integer, Integer> numMap = new HashMap<>();
for (int num : nums) {
numMap.put(num, numMap.getOrDefault(num, 0) + 1);
}
PriorityQueue<Map.Entry<Integer, Integer>> q = new PriorityQueue<>((a, b) -> a.getValue() - b.getValue());
for (Map.Entry<Integer, Integer> entry : numMap.entrySet()) {
q.offer(entry);
if (q.size() > k) {
q.poll();
}
}
int[] ans = new int[k];
for (int i = 0; i < k; i++) {
ans[i] = q.poll().getKey();
}
return ans;
}
}

第一种解法使用PriorityQueue来解.

时间复杂度: O(n + nlogk) 因为首先遍历, 其次是插入heap是logk(对数的底是2), k是heap中的元素个数. 因此可以合并为O(nlogk)
空间复杂度: O(n)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class Solution {
static class NumCountPair {
int num;
int count;

NumCountPair(int num, int count) {
this.num = num;
this.count = count;
}
}

public int[] topKFrequent(int[] nums, int k) {
Map<Integer, Integer> numMap = new HashMap<>();
for (int num : nums) {
numMap.put(num, numMap.getOrDefault(num, 0) + 1);
}
NumCountPair[] pairArray = new NumCountPair[numMap.size()];
int pos = 0;
for (Map.Entry<Integer, Integer> entry : numMap.entrySet()) {
pairArray[pos] = new NumCountPair(entry.getKey(), entry.getValue());
pos += 1;
}
quickSelect(pairArray, 0, pairArray.length - 1, k);
int[] ans = new int[k];
for (int i = 0; i < ans.length; i++) {
ans[i] = pairArray[i].num;
}
return ans;
}

private void quickSelect(NumCountPair[] pairArray, int start, int end, int k) {
int pivot = start, left = start + 1, right = end;
while (left <= right) {
if (pairArray[left].count < pairArray[pivot].count && pairArray[right].count > pairArray[pivot].count) {
swap(pairArray, left, right);
left += 1;
right -= 1;
continue;
}
if (pairArray[left].count >= pairArray[pivot].count) {
left += 1;
}
if (pairArray[right].count <= pairArray[pivot].count) {
right -= 1;
}
}
swap(pairArray, pivot, right);
if (right == k - 1) {
return;
} else if (right < k - 1) {
quickSelect(pairArray, right + 1, end, k);
} else {
quickSelect(pairArray, start, right - 1, k);
}
}

private void swap(NumCountPair[] pairArray, int i, int j) {
NumCountPair temp = pairArray[i];
pairArray[i] = pairArray[j];
pairArray[j] = temp;
}
}

quick select的写法.
时间复杂度: 构建map: O(n) 构建pairArray: O(n) quickSelect: O(logn) 最终存到ans中: O(n). 一共是O(3n + logn)也就是O(n)
空间复杂度: O(n)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
public int[] topKFrequent(int[] nums, int k) {
Map<Integer, Integer> numCount = new HashMap<>();
for (int num : nums) {
numCount.put(num, numCount.getOrDefault(num, 0) + 1);
}
List<List<Integer>> buckets = new ArrayList<>();
for (int i = 0; i < nums.length + 1; i++) {
buckets.add(new ArrayList<>());
}
for (Map.Entry<Integer, Integer> entry : numCount.entrySet()) {
buckets.get(entry.getValue()).add(entry.getKey());
}
List<Integer> ans = new ArrayList<>();
for (int i = buckets.size() - 1; i >= 0; i--) {
if (buckets.get(i).size() > 0) {
ans.addAll(buckets.get(i));
if (ans.size() == k) {
break;
}
}
}
int[] finalAns = new int[ans.size()];
for (int i = 0; i < finalAns.length; i++) {
finalAns[i] = ans.get(i);
}
return finalAns;
}
}

bucket sort.