1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List<Integer> leftBound;
private List<Integer> rightBound;
private List<Integer> leaves;

public List<Integer> boundaryOfBinaryTree(TreeNode root) {
if (root == null)
return new ArrayList<>();
leftBound = new ArrayList<>();
rightBound = new ArrayList<>();
leaves = new ArrayList<>();
List<Integer> ans = new ArrayList<>();
ans.add(root.val);
if (root.left != null) {
dfs(root.left, -1);
}
if (root.right != null) {
dfs(root.right, 1);
}
for (int node : leftBound) {
ans.add(node);
}
for (int node : leaves) {
ans.add(node);
}
for (int node : rightBound) {
ans.add(node);
}
return ans;
}

private void dfs(TreeNode node, int status) {
if (node == null)
return;
if (node.left == null && node.right == null) {
leaves.add(node.val);
} else if (status == -1) {
leftBound.add(node.val);
if (node.left != null) {
dfs(node.left, -1);
dfs(node.right, 0);
} else {
dfs(node.right, -1);
}
} else if (status == 1) {
rightBound.add(0, node.val);
if (node.right != null) {
dfs(node.left, 0);
dfs(node.right, 1);
} else {
dfs(node.left, 1);
}
} else {
dfs(node.left, 0);
dfs(node.right, 0);
}
}
}

我们dfs然后告诉每个node它是左边界, 右边界还是都不是. 通过判断是否有children来判断是否是leaf.

时间复杂度: O(n)
空间复杂度: O(n)